Time Series Data for Equipment Reliability Analysis With Deep Learning
نویسندگان
چکیده
منابع مشابه
Deep Learning for Time-Series Analysis
In many real-world application, e.g., speech recognition or sleep stage classification, data are captured over the course of time, constituting a Time-Series. Time-Series often contain temporal dependencies that cause two otherwise identical points of time to belong to different classes or predict different behavior. This characteristic generally increases the difficulty of analysing them. Exis...
متن کاملa time-series analysis of the demand for life insurance in iran
با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند
TSViz: Demystification of Deep Learning Models for Time-Series Analysis
This paper presents a novel framework for demystification of convolutional deep learning models for time series analysis. This is a step towards making informed/explainable decisions in the domain of time series, powered by deep learning. There have been numerous efforts to increase the interpretability of image-centric deep neural network models, where the learned features are more intuitive t...
متن کاملReliability Analysis and Failure Prediction of Construction Equipment with Time Series Models
Reliability and availability of the equipment or plants used in construction and civil engineering field is significant issue for all stakeholders. Unexpected breakdown and repairs could cause serious consequences such as extra cost and project period extension. Therefore, it is necessary to study the reliability of the construction equipment and predict the failures in time with a reasonable d...
متن کاملDeep Learning for Time Series Modeling
Demand forecasting is crucial to electricity providers because their ability to produce energy exceeds their ability to store it. Excess demand can cause “brown outs,” while excess supply ends in waste. In an industry worth over $1 trillion in the U.S. alone [1], almost 9% of GDP [2], even marginal improvements can have a huge impact. Any plan toward energy efficiency should include enhanced ut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3000006